skip to main content


Search for: All records

Creators/Authors contains: "Thompson, LuAnne"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Gender equity, providing for full participation of people of all genders in the oceanographic workforce, is an important goal for the continued success of the oceanographic enterprise. Here, we describe historical obstructions to gender equity; assess recent progress and the current status of gender equity in oceanography by examining quantitative measures of participation, achievement, and recognition; and review activities to improve gender equity. We find that women receive approximately half the oceanography PhDs in many parts of the world and are increasing in parity in earlier levels of academic employment. However, continued progress toward gender parity is needed, as reflected by metrics such as first-authored publications, funded grants, honors, and conference speaker invitations. Finally we make recommendations for the whole oceanographic community to continue to work together to create a culture where oceanographers of all genders can thrive, including eliminating harassment, reexamining selection and evaluation procedures, and removing structural inequities. 
    more » « less
  2. Abstract

    This study examines the impact of ocean advection and surface freshwater flux on the non‐seasonal, upper‐ocean salinity variability in two climate model simulations with eddy‐resolving and eddy‐parameterized ocean components (HR and LR, respectively). We assess the realism of each simulation by comparing their sea surface salinity (SSS) variance with satellite and Argo float estimates. In the extratropics, the HR variance is about five times larger than that in LR and agrees with Argo. In turn, the extratropical satellite SSS variance is smaller than that from HR and Argo by about a factor of two, potentially caused by the insufficient resolution of radiometers to capture mesoscale features and their low sensitivity to SSS in cold waters. Using a simplified salinity conservation equation for the upper‐50‐m ocean, we find that the advection‐driven variance in HR is, on average, 10 times larger than the surface flux‐driven variance, reflecting the action of mesoscale processes.

     
    more » « less
  3. Abstract Marine heatwaves (MHWs), episodic periods of abnormally high sea surface temperature, severely affect marine ecosystems. Large marine ecosystems (LMEs) cover ~22% of the global ocean but account for 95% of global fisheries catches. Yet how climate change affects MHWs over LMEs remains unknown because such LMEs are confined to the coast where low-resolution climate models are known to have biases. Here, using a high-resolution Earth system model and applying a ‘future threshold’ that considers MHWs as anomalous warming above the long-term mean warming of sea surface temperatures, we find that future intensity and annual days of MHWs over the majority of the LMEs remain higher than in the present-day climate. Better resolution of ocean mesoscale eddies enables simulation of more realistic MHWs than low-resolution models. These increases in MHWs under global warming pose a serious threat to LMEs, even if resident organisms could adapt fully to the long-term mean warming. 
    more » « less
  4. null (Ed.)
    Abstract Ocean heat transport (OHT) plays a key role in climate and its variability. Here, we identify modes of low-frequency North Atlantic OHT variability by applying a low-frequency component analysis (LFCA) to output from three global climate models. The first low-frequency component (LFC), computed using this method, is an index of OHT variability that maximizes the ratio of low-frequency variance (occurring at decadal and longer timescales) to total variance. Lead-lag regressions of atmospheric and ocean variables onto the LFC timeseries illuminate the dominant mechanisms controlling low-frequency OHT variability. Anomalous northwesterly winds from eastern North America over the North Atlantic act to increase upper ocean density in the Labrador Sea region, enhancing deep convection, which later increases OHT via changes in the strength of the Atlantic Meridional Overturning Circulation (AMOC). The strengthened AMOC carries warm, salty water into the subpolar gyre, reducing deep convection and weakening AMOC and OHT. This mechanism, where changes in AMOC and OHT are driven primarily by changes in Labrador Sea deep convection, holds not only in models where the climatological (i.e., time-mean) deep convection is concentrated in the Labrador Sea, but also in models where the climatological deep convection is concentrated in the Greenland-Iceland-Norwegian (GIN) Seas or the Irminger and Iceland Basins. These results suggest that despite recent observational evidence suggesting that the Labrador Sea plays a minor role in driving the climatological AMOC, the Labrador Sea may still play an important role in driving low-frequency variability in AMOC and OHT. 
    more » « less
  5. Abstract

    Water mass transformation (WMT) in the North Atlantic plays a key role in driving the Atlantic Meridional Overturning Circulation (AMOC) and its variability. Here, we analyze subpolar North Atlantic WMT in high‐ and low‐resolution versions of the Community Earth System Model version 1 (CESM1) and investigate whether differences in resolution and climatological WMT impact low‐frequency AMOC variability and the atmospheric response to this variability. We find that high‐resolution simulations reproduce the WMT found in a reanalysis‐forced high‐resolution ocean simulation more accurately than low‐resolution simulations. We also find that the low‐resolution simulations, including one forced with the same atmospheric reanalysis data, have larger biases in surface heat fluxes, sea‐surface temperatures, and salinities compared to the high‐resolution simulations. Despite these major climatological differences, the mechanisms of low‐frequency AMOC variability are similar in the high‐ and low‐resolution versions of CESM1. The Labrador Sea WMT plays a major role in driving AMOC variability, and a similar North Atlantic Oscillation‐like sea‐level pressure pattern leads AMOC changes. However, the high‐resolution simulation shows a pronounced atmospheric response to the AMOC variability not found in the low‐resolution version. The consistent role of Labrador Sea WMT in low‐frequency AMOC variability across high‐ and low‐resolution coupled simulations, including a simulation which accurately reproduces the WMT found in an atmospheric‐reanalysis‐forced high‐resolution ocean simulation, suggests that the mechanisms may be similar in nature.

     
    more » « less
  6. Abstract

    We present idealized simulations to explore how the shape of eastern and western continental boundaries along the Atlantic Ocean influences the Atlantic meridional overturning circulation (AMOC). We use a state-of-the art ocean–sea ice model (MOM6 and SIS2) with idealized, zonally symmetric surface forcing and a range of idealized continental configurations with a large, Pacific-like basin and a small, Atlantic-like basin. We perform simulations with five coastline geometries along the Atlantic-like basin that range from coastlines that are straight to coastlines that are shaped like the coasts of the American and African continents. Changing the Atlantic basin coastline shape influences AMOC strength in a manner distinct from simply increasing basin width: widening the basin while maintaining straight coastlines leads to a 10-Sv (1 Sv ≡ 106m3s−1) increase in AMOC strength, whereas widening the basin with the geometry of the American and African continents leads to a 6-Sv increase in AMOC strength, despite both cases representing the same average basin-width increase relative to a control case. The structure of AMOC changes are different between these two cases as well: a more realistic basin geometry results in a shoaled AMOC while widening the basin with straight boundaries deepens AMOC. We test the influence of the shape of the both boundaries independently and find that AMOC is more sensitive to the American coastline while the African coastline impacts the abyssal circulation. We also find that AMOC strength and depth scales well with basin-scale meridional density difference, even with different Atlantic basin geometries, illuminating a robust physical link between AMOC and the North Atlantic western boundary density gradient.

     
    more » « less
  7. Abstract

    This study investigates the influence of oceanic and atmospheric processes in extratropical thermodynamic air‐sea interactions resolved by satellite observations (OBS) and by two climate model simulations run with eddy‐resolving high‐resolution (HR) and eddy‐parameterized low‐resolution (LR) ocean components. Here, spectral methods are used to characterize the sea surface temperature (SST) and turbulent heat flux (THF) variability and co‐variability over scales between 50 and 10,000 km and 60 days to 80 years in the Pacific Ocean. The relative roles of the ocean and atmosphere are interpreted using a stochastic upper‐ocean temperature evolution model forced by noise terms representing intrinsic variability in each medium, defined using climate model data to produce realistic rather than white spectral power density distributions. The analysis of all datasets shows that the atmosphere dominates the SST and THF variability over zonal wavelengths larger than ∼2,000–2,500 km. In HR and OBS, ocean processes dominate the variability of both quantities at scales smaller than the atmospheric first internal Rossby radius of deformation (R1, ∼600–2,000 km) due to a substantial ocean forcing coinciding with a weaker atmospheric modulation of THF (and consequently of SST) than at larger scales. The ocean forcing also induces oscillations in SST and THF with periods ranging from intraseasonal to multidecadal, reflecting a red spectrum response to ocean forcing similar to that driven by atmospheric forcing. Such features are virtually absent in LR due to a weaker ocean forcing relative to HR.

     
    more » « less
  8. Abstract

    The Pacific Decadal Oscillation (PDO) is the dominant pattern of observed sea surface temperature variability in the North Pacific. Its characteristic pattern of eastern intensified warming and cooling within the Kuroshio‐Oyashio Extension is pervasive across timescales. We investigate the mechanisms for its decadal persistence in coupled climate models, focusing on the role of ocean circulation changes. We use low‐frequency component analysis to isolate the mechanisms relevant at decadal and longer timescales from those acting at shorter timescales. The PDO warm phase is associated with strengthening and expansion of the North Pacific subpolar gyre in response to a deepening of the Aleutian Low. The subpolar gyre takes several years to respond to wind stress forcing through baroclinic ocean Rossby wave adjustment, such that white noise atmospheric forcing is integrated into red noise, increasing variability at long timescales. Sea level anomalies within the Kuroshio‐Oyashio Extension provide an observable ocean circulation signature of North Pacific decadal variability.

     
    more » « less
  9. null (Ed.)